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Abstract. Monto Carlo simulation of the AB percolation model on large triangular lattices 
gives indications that this problem has the same set of critical exponents as ordinary 
percolation although a critical amplitude ratio, which is thought to be universal, appears 
to be significantly different from accepted values for two-dimensional percolation. In 
addition, finite-size scaling functions for both the percolation probability and susceptibility 
seem to be significantly different from those for ordinary percolation in two dimensions. 
We also show that this problem is closely connected to that of the percolation hull and in 
fact is dual to the complement of the hull problem. 

1. Introduction 

AB percolation is a connectivity problem in which connection exists only between 
neighbouring unlike species A and B and not between like species such as A and A 
or B and B. This problem is usually discussed as an example falling in a group of 
percolation problems called polychromatic percolation (for which there are several 
excellent reviews; see, e.g., Halley (1983) and references therein). In particular, in 
this paper we consider each site of a triangular lattice to be occupied at random (and 
independently) by an A particle with probability p and by a B particle otherwise and 
consider connectivity between nearest-neighbour AB pairs only. It is clearly a relevant 
model if one wants to study a gelation problem where crosslinking occurs only between 
two unlike monomers constituting the gel. Other applications are also discussed in 
the already formidable literature on polychromatic percolation. 

In view of the simplicity of the problem and of the potential usefulness, it is rather 
surprising that there is apparently no agreement on the nature of the critical point of 
AB percolation. On the one hand, Mai and Halley (1980) conclude, based on Monte 
Carlo simulations on the triangular lattice, that it is in a different universality class 
from the usual two-dimensional percolation while, on the other hand, SevSek et a1 
(1983) conclude from phenomenological renormalisation that it is in the same univer- 
sality class. To be sure, there are points all seem to agree on: (i) in three dimensions 
they are probably in the same universality class and (ii) for lattices consisting of two 
sublattices with ordinary site percolation threshold greater than f there is no transition. 
Still, on the triangular lattice, which appears to be the only regular two-dimensional 
lattice supporting infinite AB connectivity, there is a fundamental disagreement. 

Since Mai and Halley ( 1980) calculated the critical exponents /3 (for the percolation 
probability) and y (for the susceptibility) (for the definition of these exponents, see 
the review by Stauffer (1979)) and since SevSek et a1 (1983) calculated v (for the 
connectedness length), one possibility is that the ‘thermal’ eigenvalue is the same for 
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Figure 1. Duality transformation is illustrated from a bond configuration of AB percolation 
on a triangular lattice (shown in zigzag lines) to one on a honeycomb lattice (shown in 
double lines). The full circles represent A ( E )  particles and open circles represent B ( A )  
particles. This figure also shows the percolation hull in bold lines on the dual honeycomb 
lattice (which is just the complement of the double lines). Notice that the hull is a collection 
of non-intersecting polygons and that within the particular hull cluster shown here there 
are three disconnected clusters made of the double lines. 

both problems while the ‘magnetic’ one is different. I f  this were true, it would be 
interesting since this is the opposite of usual ‘extended’ universality (Suzuki 1974). 
(However, we also note that it would be similar to the relationship between the 
percolation hull problem and the percolation problem (Ziff 1986).) This is one reason 
why it is interesting to perform a much larger scale Monte Carlo simulation on this 
problem. 

Yet another reason for which such an undertaking is of interest is that this problem 
is dual to the one whose cluster configurations (with proper weights) are obtained as 
the complement of the polymerisation problem with only rings on the honeycomb 
lattice as discussed in the following section. The latter problem is otherwise known 
as the percolation hull problem for site percolation on the triangular lattice (see figure 
1). I t  is easy to see this because each configuration with only rings on the honeycomb 
lattice is the result of connecting together the bonds which cross the perimeter bonds 
for site percolation clusters on the dual triangular lattice. The hull problem has been 
solved recently by a mapping to a Coulomb gas (Saleur and Duplantier 1987) and it 
is now believed that its ‘thermal’ eigenvalue is the same as for percolation while its 
‘magnetic’ eigenvalue is different, i.e. the exponents Y and a are the same as for 
percolation while P, y, etc, are different. So the question is: is AB percolation (which 
is dual to the complement of the hull) like ordinary percolation or like the hull, or 
possibly like neither? 

2. Duality transformation for AB percolation 

AB percolation is normally stated as a random site percolation problem. However, 
since the essential connectivity is defined through bonds between A and B particles, 
it is easier to think of it as a bond percolation problem. This, however, introduces 
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correlations between bonds and the problem is no longer a random one but a correlated 
one. This situation is illustrated in figure 1 where, e.g., not all three bonds on a 
triangular unit cell can be present. One is reminded by this of a similar situation which 
occurred in a model called ‘four-coordinated site percolation’ introduced by Stanley 
(1979) in order to model low-density patches in liquid water; in that case, the original 
problem is a random-bond percolation model but one instead considers it as a corre- 
lated-site percolation problem. 

The constraint is simply that if one goes around any closed loop on the lattice then 
one must get back to the same kind of site (in fact that same site), or put another way, 
that there are even numbers of bonds on any closed loop. For any two-dimensional 
lattice with no overlapping bonds, this can be further simplified to the following 
constraint. 

(A) On any unit cell, an even number of bonds are occupied. 
A unit cell is the smallest repeating segment of the lattice and is triangular on a 

triangular lattice and square on a square lattice and so on. Thus in our problem on 
the triangular lattice, there can be only two bonds or none on the unit cell. All bond 
graphs satisfying this constraint are allowed (in fact each occurs exactly twice because 
of the AB symmetry) and no other graphs are allowed. 

In addition, if p is the probability that a given site is A, then the probability that 
any given bond is occupied is 2 p  (1 - p )  when no knowledge of any other bond is 
presumed. Thus the overall concentration q of the bonds in the correlated-bond 
percolation picture is simply 

q =2p( l  - P I .  (1) 

The problem is now reduced to a constrained bond-percolation problem with constraint 
(A) and overall bond concentration (1). Since the transformation (1) is analytic in p, 
all critical exponents given in terms of p are unchanged when given in terms of q 
except if p , = i  where q is a maximum. 

To this problem we apply the well known duality transformation (cf Sykes and 
Essam 1964). As shown in figure 1, each triangular cell is transformed into a vertex 
with three bonds on a honeycomb lattice, and each of these bonds is occupied if and 
only if the corresponding bond on the triangular lattice (which crosses it)  is empty. 
(It  is important to realise that the latter requirement is not symmetric with the one 
which requires the crossing bonds to be occupied!) In this process, the concentration 
of bonds becomes 1 - q, and the constraint (A) is now replaced by the following new 
constraint. 

(B) Each vertex of the dual lattice is attached to an odd (even) number of occupied 
bonds if the number of edges of the original unit cell is odd (even). 

The duality theorem as extended to the present case states that 

G ( q ;  T(A))  = 4 ( q ) +  G(1-  9; H(B)) ( 2 )  
where G is the mean total number of clusters per site and T ( A )  refers to the problem 
on the triangular lattice with the constraint ( A )  while H(B) refers to the dual problem 
on the honeycomb lattice with the constraint (B).  The quantity & ( q )  is a certain 
polynomial in q having to do  with the probabilities of occurrence of certain faces in 
the Kagome matching lattice which is the covering lattice of the triangular bond lattice 
(Sykes and Essam 1964). Assuming that there is one singularity in G, duality theri has 
consequences in the estimation of pc as discussed below and also in the fact that at 
least the ‘thermal’ eigenvalue (corresponding to exponents I/ and a, etc; see Stauffer 
(1979)) must be the same for the two problems T ( A )  and H( B). 
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The percolation threshold for A B  percolation on the triangular lattice was estimated 
by Mai and Halley (1980) to be p = 0.2145 f 0.0005 (with another positioned symmetri- 
cally about i) while SevSek et al (1983) estimated it to be about 0.21. We have an 
independent estimate of pc  from our simulations which is comparable with these as 
discussed below; however, we can also put this number in an interesting perspective 
by considering the dual H ( B )  problem. 

First, note that the relationship between the threshold qc of the original T(A) 
problem and that q: of the dual H(B)  problem follows from the relation given by 
Sykes and Essam (1964) first formulated for the random percolation problem: 

qc+ q: = 1. (3) 

Now the percolation threshold for the random-bond problem on the honeycomb lattice 
is known to be exactly 1 - 2 sin ( T /  18) or about 0.6527. If we imagine a typical random 
configuration on the honeycomb lattice at this p c  and try to modify it so that constraint 
( B )  is satisfied, while keeping the same overall bond concentration, we must dismantle 
some of the bonds attached to two-coordinated sites so that all sites are turned into 
either one- or three-coordinated ones. This process in general involves trade-offs in 
connectivity so we do not expect the overall connectivity to change very much; still, 
since an incipient infinite cluster has many singly connected bonds, one would expect 
the dismantling of the two-coordinated sites to destroy the incipient infinite connectivity. 
If this argument is correct, then we will have 

q:> 1-2  sin ( ~ / 1 8 ) .  (4) 

This will then yield p c  for the original problem of p C s  0.225 (with another one 
symmetrically positioned about i) which is certainly consistent with the numerical 
estimates. Incidentally, the closeness of the value obtained from the random percolation 
problem on the honeycomb lattice with the actually observed p c  lends some support 
to the idea that the type of transition involved is also close to that of the usual 
percolation problem. 

To cast the problem in another light, let us introduce a new problem on the dual 
lattice which is defined by the graphs obtained by complementing those satisfying (B) 
or the following new constraint. 

(C) Each vertex of the dual lattice is attached to an even number of occupied bonds. 
We note that if the number of edges of the original unit cell is even (e.g. a square 

lattice) then the constraints (B) and (C) are identical. In the case of a triangular lattice, 
this new constraint yields a new problem on the honeycomb lattice with each vertex 
attached to either no occupied bond or exactly two occupied bonds. This translates 
to the requirement that only connected components allowed on the honeycomb lattice 
are indefinitely long self-avoiding walks (SAW)  or else self-avoiding polygons of any 
size with the bond concentration q. This is of course just the description of the 
percolation hull given earlier. 

In the case of the square lattice SQ (A),  the similarly transformed dual problem SQ 

(B) is a bond percolation problem, with the bond concentration equal to 1 - q, again 
on a square lattice but with a constraint that all vertices are attached to either no, two 
or four occupied bonds. This allows self-avoiding polygons and four-coordinated 
crosslinks (as well as indefinitely long SAW). Although this problem is known to have 
no percolation transition (cf Halley 1983) it is interesting to note that this is somewhat 
similar to so-called restricted-valence percolation problems (Gaunt et a1 1983). The 
complement SQ (C) of the dual problem SQ (B) is, interestingly, formally the same 
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problem as SQ ( B )  itself. This would appear to mean that the percolation hull for the 
square-lattice site percolation is dual to the AB percolation on the same lattice; however, 
the bond concentration 1 - q for SQ ( B )  is not less than i while that q for SQ (C) is 
always 4 or less and thus they describe the same problem in different regions of the 
bond concentration. One might surmise then that A B  percolation on the square lattice 
has a transition if p is analytically continued to complex values and, there, the 'thermal' 
eigenvalue is the same as that of the hull and thus as that of the ordinary percolation. 

3. Monte Carlo results 

Previous Monte Carlo calculations by Mai and Halley (1980) used lattices of relatively 
small size (up  to 280 x 280) and their statistics were not very good by today's standards 
of similar calculations done for random percolation (see, e.g., Margolina et a1 1984). 
They gave surprising values for the critical exponents y = 1.564k0.182 and p = 
0.121 It0.004, quite different from the ordinary percolation values: y = $ = 2.388. . . and 
p = & = 0.1388. . . which are believed to be exact (den Nijs 1979, Nienhuis et a1 1980, 
Pearson 1980, Nienhuis 1982). We improve the statistics by using lattices of four 
successive sizes, namely, 1000 x 1000, 2500 x 2500, 5000 x 5000, and 10 000 x 10 000 
where for each lattice size we simulate percolation clusters with free boundaries at 
seventeen different values of p from 0.180 to 0.245. The total number of samples used 
range from 100 for 10 000 x 10 000 to 380 for 2500 x 2500. These improvements are 
made possible by applying the now well known technique of Hoshen and Kopelman 
(1976) to this problem; since AB percolation involves only two kinds of sites, the 
modifications required are relatively minor. 

As random percolation, for the purpose of computing the percolation probability, 
the largest cluster stands for the infinite or percolating cluster. The exponent y is 
estimated from the divergence of susceptibility which is just the second moment of 
the cluster-size distribution. Standard techniques of estimating the exponents from 
the slopes of double logarithmic plots are used in this analysis. A trial estimate of the 
effective value of p c  is made first; then linear regression is done on the susceptibility 
against Ip - p c l / p ,  on the logarithmic scale. The effective p c  is adjusted to make the 
resulting estimates of y (below p , )  and y '  (above p c )  equal. In practice we must decide 
which region of p to use for the fitting process; we have chosen six values of p (from 
0.180 to 0.205) below p c  and five kalues (from 0.225 to 0.235) above p c  because this 
region presented good fits consistently for all of the lattice sizes involved. We give in 
figure 2 such a double logarithmic plot of the susceptibility from the 10 000 x 10 000 
lattice where the effective p c  ( L =  10000) was estimated to be about 0.215 47; this 
number is only accurate within the particular procedure and would change if, e.g., the 
fitting region were changed. 

The above procedure then yields an effective p c  ( L )  for each latice size L. To 
estimate the true p c  for the limit of infinite lattice size, we must extrapolate p c  ( L )  
linearly against L-'I" for L .+ 30 according to the theory of finite-size scaling (Fisher 
1972). Since SevSek et a1 (1983) explicitly computed Y to be the same as the percolation 
value of !, we use this value first to perform the extrapolation. Later we see that this 
is consistent with our data because the least-squares fit with this value gives reasonable 
correlation and also because the finite-size scaling is seen to be well satisfied using 
this estimated p c  and v = 4 .  This procedure of linear least-squares fit yields the estimate 

( 5 )  p c  = 0.21 5 24 f 0.000 34. 
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Figure 2. Double logarithmic plot of the susceptibility ,y = Z's'n, where n, is the number 
of clusters per site and the sum runs over all clusters except the largest one. The data are 
taken from the total of 100 Monte Carlo runs of a 1 0 0 0 0 ~  10000 triangular lattice 
distributed over seventeen values of p (from 0.180 to 0.245). The straight lines drawn are 
the least-squares fits to the points shown as full circles only but they are also reasonable 
fits to all the points except the two that are shown with large error bars. These correspond 
to p=O.125 and p =0.220, namely the two values of p closest to the estimated p c ,  The 
standard errors of all other points are smaller than the symbols used and in most cases 
far smaller. The two lines shown give y = 2.38 and the amplitude ratio R = 145. 

The quoted error range is from the least-squares fit and does not reflect any systematic 
error in the values p c  ( L )  for each L if there were any. 

The estimates of the exponent y and the amplitude ratio R for the susceptibility 
above and below p c  are made for each L in the above procedure. The final estimates 
of y and R with associated errors are made somewhat crudely by simply taking the 
average of the estimates from the four lattice sizes with no consideration of relative 
weights; however, the final estimates are quite consistent with the values obtained from 
the largest lattice ( L  = 10 000) alone: 

y = 2.39 * 0.09 (6) 

and 

In both cases, the quoted errors are only those due to the standard error of the four 
estimates from the four sizes; there may be substantial additional systematic errors not 
accounted for. 

While the estimate for y is very close to that of the ordinary percolation discussed 
before, the amplitude ratio R for susceptibility is significantly different from the 
ordinary percolation value of about 200 (cf Nakanishi and Stanley 1980). This situation 
is quite similar to two other cases known to us, namely continuum percolation and  
kinetic gelation. In two-dimensional continuum percolation, Gawlinski and Stanley 
(1981) asserted on the basis of Monte Carlo simulations that all the exponents are the 
same as ordinary lattice percolation but the corresponding amplitude ratio (according 
to certain definitions of the size of a cluster) is about 50 instead of 200. In kinetic 
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Figure 3. The finite-size scaling function X‘L-~‘” is shown as a function of I(p - p c ) / p c l L ” ’ .  
L is the linear size of the lattice from 1000 (O), 2500 (U), 5000 ( A )  and 10000 (0) and 
xL is the susceptibility. The value of 0.215 24 used for p c  is the estimate obtained in this 
work and those for the critical exponents are the random percolation ones (see text). 
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Figure4. The finite-size scaling function PLLp” is shown as a function of I ( p - p c ) / p c l L ” ’ .  
L is the linear size of the lattice from 1000 (O), 2500 (E), 5000 ( A )  and 10000 (0) and 
PL is the percolation probability (the fraction of the largest cluster over all lattice sites). 
The value of 0.215 24 used for p c  is the estimate obtained in this work and those for the 
critical exponents are the random percolation ones (see text). We see that the general 
shape of this function is quite similar to the corresponding function given by Heermann 
and Stauffer (1980) for the square bond percolation but it cannot be reduced to the same 
function quantitatively by simple scaling using metrical factors alone. 



6082 H Nakanishi 

gelation in three dimensions, the exponents are again estimated to be the same as for 
three-dimensional percolation while the amplitude ratio R is apparently much smaller 
(Herrmann er a1 1982). 

The estimate of p is not as reliable as for y since we use the percolation probability 
P ( p )  only on one side of pc  to fit for this exponent. The effective p c ( L )  used for the 
estimation of y is not necessarily the best one to use for this function as such effective 
thresholds generally depend upon the function we wish to use them for. If we ignore 
this problem and use the same p,( L )  and the same five values of p > p c  as used for y, 
and if we then take a simple average of the resulting estimates of p, then we obtain 
p = 0.127 * 0.002. However, the double logarithmic plots of P ( p )  against p -pc (  L )  
have systematic curvatures even in the region of fitting, and if we try to locate another 
effective p , ( L )  by seeking the best linearity, then we obtain estimates of p wildly 
varying from 0.10 to 0.16 depending on L. Thus we think it prudent to quote a loose 
estimate: 

/3 =0.13*0.03 (8) 
which is consistent with the ordinary percolation value of about 0.14. 

In figures 3 and 4 we give finite-size scaling functions for the percolation probability 
and susceptibility respectively, using the ordinary percolation exponents (the exact 
values quoted before for y, p and v )  as well as the present estimate of pc  = 0.215 24). 
The degree of data collapsing is excellent for both cases, reinforcing our suggestion 
that this problem has the same set of exponents as percolation. Also, the general 
functional dependence of these scaling functions are quite similar to the ordinary 
percolation counterparts although they d o  not seem to be quantitatively identical (or 
related by simple metrical factors) as is obvious from the difference in the amplitude 
ratio R. 

4. Summary 

Extensive Monte Carlo simulations suggest strongly that AB percolation has the same 
set of critical exponents as ordinary percolation supporting the conclusions of Seviek 
et a1 (1983) but contradicting the Monte Carlo study of Mai and Halley (1980) which 
is similar to ours but performed on a much smaller scale. There may, however, be 
subtle differences between these two problems as the difference in an amplitude ratio 
suggests. There is an interesting connection between this problem and that of the 
percolation hull; AB percolation is dual to the complement of the hull. Curiously, 
for the square lattice, this latter connection reduces to the fact that both the dual of 
AB percolation and the hull problem derive from the identical rules on the same 
lattice, however, in different regions of the bond concentration. The former has no 
transition while the latter has a transition whose ‘thermal’ eigenvalue is the same as 
for percolation and whose ‘magnetic’ one is different. This may also suggest, by analytic 
continuation of p to a complex region, that the ‘thermal’ eigenvalue of AB percolation 
must also be the same as that of ordinary percolation. 
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raises the hope that Monte Carlo estimates of such ratios may be quite accurate. 
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